If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x-356=0
a = 3; b = 7; c = -356;
Δ = b2-4ac
Δ = 72-4·3·(-356)
Δ = 4321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{4321}}{2*3}=\frac{-7-\sqrt{4321}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{4321}}{2*3}=\frac{-7+\sqrt{4321}}{6} $
| z4+2z2-8=0 | | 9x-6=3x+39 | | 9(x−6)=18 | | 0,2x=7 | | x+4(1-x)=2x-3(2-x) | | 15y-5=49-3y | | 18y÷2=18 | | (3x+7)(5x^2-19x+12)=0 | | 18x-3x^=0 | | 2(x-2)+3=5 | | 7x-1=3x+7= | | 0.2*n=0.1 | | 9x^2-24x-17=0 | | 9x^2-24x-17=1 | | 3x+9=x+16 | | 4x+104=14x-6 | | 3x+2(-2x+2)=11 | | 11=4n-13 | | x+5x+4x+3x+2x=4120 | | 2n-18=7 | | 4x+6=2(x-1) | | 1,5x+8=6-0,5x | | 17-25y=-3 | | .17x^2-20x+400=0 | | 5x-10-2x=29 | | 22=-2(3x+1) | | 7^(5x+3)=512 | | (15-20x)/5=7 | | 25÷40=75.5/x | | x^2+1/x^2-6=0 | | 1/3x-2=11 | | x²+1/x²-6=0 |